
力学系理論を水位予測に活用
当社の水位予測技術は、力学系理論に用いられる「埋め込み」(embedding)と呼ばれる手法を応用したものです。河川水位のように決定論的なダイナミクスから生成される時系列データは、一部の観測データのみからでも、埋め込むことでシステムの解の軌道(アトラクタ)を再構成できることが知られています。本技術はこの性質を応用し、再構成したアトラクタの幾何的な挙動を利用することで将来の水位を予測します。

時系列データを十分大きな次元で「埋め込む」ことで、
元のシステムの解の軌道(アトラクタ)を再構成できる
予測手法の特徴

-
過去の水位・雨量データのみ*を用い、短期間で実装可能
-
AI手法が苦手とする、未経験の洪水規模も予測
*流入量予測ではダム流入量/放流量を使用
感潮域では潮位データを利用する場合あり
物理モデルとの比較
本予測技術による予測システム構築に必要なのは、予測地点での過去の水位のみです。既往の物理モデルのような、流量や河川形状、地形・地質データは不要であり、H-Q式の構築も必要ありません。対象地点の水位さえあれば、弊社で用意する雨量データと合わせて短期間で高精度の予測モデルを作成できます。予測地点によっては潮位やダムの影響が無視できませんが、これらに関連する時系列データを用意することで予測に考慮することが来ます。また、予測に要する時間は数秒であり、ほぼリアルタイムに予測できます。

*1 過去10年分程度(豪雨時の水位変動が10~15回以上含まれる期間)のデータが必要
人工知能モデルとの比較
ニューラル・ネットワークを始めとしたブラックボックス的な手法(人工知能モデル)では、未経験の洪水規模で予測が不安定になる場合があり、事前に予測の挙動を把握することは困難です。当社の手法では、埋め込みにより再構成したアトラクタを参照して過去洪水との乖離を把握できるため、安定した予測結果が得られ、また経験的にも十分な精度が確認されています。
また、近年発展が著しいディープラーニングでは、大量のパラメータに対するフィッティングが必要であり、一般に少数のデータしか得られない洪水データに対しては十分な精度を発揮するのは困難です。一方、当社の予測技術は少数データを対象として開発された予測手法をベースにしており、比較的少ないデータからでも十分な精度を発揮します。
一般に人工知能モデルでは、データが蓄積された場合、予測モデルを作り直しモデルパラメータを更新することで精度の向上が期待できます。一方、当社の予測手法では、予測モデルを作り直さずとも(モデルパラメータを更新しなくとも)、精度の向上を図ることができます。ただし、十分にデータが蓄積された場合は、再度モデルを作り直すことでさらなる精度の向上が期待できます。
人工知能モデルに対する優位性
-
未経験の洪水に対しても安定した予測精度
-
少数データに対しても適用可能
-
モデルを作り直さずともデータ蓄積により精度向上